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First-order phase transition and metastability in the critical 
two-dimensional Ising model 

S B Rutkevich 
Institute of Physics of Solids and Semiconductors. P Brovki 17, Minsk, Belms 

Received 9 December 1994 

Abstract. The fermionic version ofthe two-dimensional Ising model in auniform magnetic field 
is studied. Its approximate but rather accurate solution was obtained recently in a variational 
procedure based on the BCS ansatz for the ground stake. Here, this solution is continued 
analytically into the complex H-plane in the vicinity of the origin. Io the ferromagnetic phase 
an essentid singularity in the free-energy is observed at the point H = 0 of the type predicted by 
the droplet condenmtion theory. Simple phenomenological estimates for the radius of the critical 
droplet and for the me of &cay of metstable states are confi~med by microscopic calculations. 

1. Introduction 

The problem of analytical continuation of thermodynamic functions ‘into the metastable 
region beyond the point of the first-order phase transition has been of considerable interest 
for many years. Traditionally it is concerned with the Ising-like models of a ferromagnet 
or lattice gas. 

Two main approaches have been widely discussed in literature. 

(i) In the van der Waals and equivalent approximate theories, the thermodynamic 
functions are analytical in the line of the first-order phase transition H = +0, T < Tc. 
Their analytical continuation to negative magnetic fields is associated with metastable states: 
it is terminated by the spinodal line, where the magnetic susceptibility diverges. 

(ii) Qualitatively different predictions are given by the droplet, or cluster theory of 
condensation. In phenomenological form the theory was put forward by Frenkel [I], Band 
[2] and Bijl [3] after stimulating Mayer’s analysis [4] of the high-order cluster integrals. In 
the droplet theory the metastable state has a finite lifetime and its relaxation is caused by 
the fluctuating appearance and subsequent growth of a critical droplet of the stable phase. 
Droplets are treated as spheres with free-energies determined by their radii. 

The droplet model was reviewed critically and extended by Essam and Fisher [5 ] ,  and 
in more detail by Fisher [6]. Considering an ‘ideal gas’ of isolated clusters of different 
size and shape, Fisher constructed an approximate .‘mimic’ partition function. The main 
conclusions arising from this work are as follows. 

(i) At the point X = f O  the free-energy has a very weak essential singularity which 
prevents it from analytical continuation through the point H = 0 into the metastable phaset 
H < 0. 

t This result was obtained independently by Andreev [71. 
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(ii) In the stable region H > 0 the radius of convergence of the activity series (in 
magnetic terminology the activity p is given by p = exp[-2H/k~T]) is determined by the 
above mentioned singularity at p = 1. 

(iii) The free-energy can be analytically continued from positive to negative magnetic 
fields by passing around the singularity in the complex H-plane. In the half-line H < 0 
the freeenergy continuation has a non-zero imaginary part. 

It should be noted that Fisher’s treatment ignores the interaction between clusters. This 
approximation is reasonable in the so-called dilute limit, where the density of clusters is 
small, i.e. at temperatures well below the Curie point Tc. 

A further strong support to the droplet model was given by Isakov [8]. He proved 
rigorously that the free-energy of the d-dimensional Ising model has an essential singularity 
at the point H = 0 for small enough temperatures. An important insight into the 
mathematical nature of the droplet theory was made by Langer [9]. He studied a certain 
one-dimensional quantum model with a Hamiltonian simulating the transfer matrix of the 
2D king model in a uniform magnetic field. In microscopic analysis, Langer reproduced all 
the main features of the droplet model. Furthermore, he demonstrated in his model that the 
Hamiltonian ground state continuation in the metastable region became unstable due to the 
effect of quantum tunnelling. Langer then conjectured that the imaginary part of the free- 
energy in the line HM < 0 ‘ought to be identified with the rate of decay of the metastable 
state under some suitable stochastic process’. Subsequent investigations supported this 
conjecture, though its domain of validity is not completely clear (for more detail see [IO, 1 I] 
and references therein). For low enough temperatures T 6 0.STc droplet theory predictions 
were confirmed in extensive numerical studies by Rikvold with collaborators [lo-121. 

Thus, the droplet theory of condensation now has a reliable microscopic foundation 
in the dilute limit. In contrast, the situation is less certain in the scaling region. Direct 
extrapolation of Fisher’s partition function into the scaling region discussed in [6] seems 
problematic. Domb [13] proposed a modification of Fisher’s treatment to take into account 
the effect of the interaction between droplets and to extend the class of configurations 
considered. His suggestion is that the droplet model is applicable in the dilute limit only, 
while at higher temperatures the system exhibits behaviour of the van der Waals type. Enting 
and Baxter [14] investigated the critical thermodynamics by studying the high-field series 
for the 2D Ising model. They conclude that their results ‘are consistent with the predictions 
of the droplet model, rather than indicating the existence of spinodal‘. Abraham and Upton 
[15] came to the same conclusion upon analysis of the correlation function structure. 

The present study is based on the recent analysis [16, 171 of a simple fermionic model, 
which is equivalent in the critical region to the 2D Ising model in  a uniform magnetic field. 
The model small-H thermodynamics was described rather accurately by an approximate 
variational procedure, being very similar to that of the famous article by Bardeen, Cooper 
and Schrieffer [18] where they explain the nature of superconductivity. Here we examine 
analytical properties of the solution obtained in [16] near the line of the first-order phase 
transition H = 0, T c Tc for complex values of a magnetic field H. Though we are 
primarily interested in the scaling region, the dilute limit is also considered to make a 
useful link with well known results. 

The paper is organized as follows. In section 2 we review the droplet theory predictions 
for the radius of the critical droplet and for the rate of decay of metastable states in the critical 
2D Ising model. A simple fermionic realization of the king model in a non-zero magnetic 
field and its approximate solution [16,17] are described briefly in section 3. Sections 4 
and 5 give asymptotical analysis of the above mentioned solution for small complex values 
of a magnetic field in the dilute and scaling limits respectively. In both limits we find 
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an essential singularity at the origin H = 0 of the type predicted by the droplet model, 
and Linger’s conjecture is verified in the scaling region. Concluding remarks are given in 
section 6. 

2. Phenomenological estimates in the critical region 

In this section we review some predictions of the droplet theory in the ZD king model. We 
leave details of the theory to [IO, 111 and references therein. 

Consider the king model on the square lattice with lattice constant a and with equal 
pair energies J = J1 = Jz. The notation HI will be used for the magnetic field in the 
king model. Throughout this section we concentrate on the critical region (A - ‘11 < I ,  
where h(T) sinhZ(2J/kBT) is the standard temperature-like parameter which takes the 
unit value at the Curie point h(Tc) = 1. 

Let us now discuss how a very small magnetic field HI c 0 effects the ferromagnetic 
state (T c &) with positive average magnetization MO given by the Onsager formula 1191 

MO = (1 -A-’)‘/’ Z [2(A - l)]”’. (2.1) 

If we are considering the droplet model we expect that this state will be deseoyed in a 
finite time t,as a result of the fluctuational appearance of a critical cluster; the cluster is 
understood to be a compact region of size R, where average magnetization is negative. We 
expect further, that for a given temperature T c TC the size of the critical cluster goes 
to infinity in the l i t  HI + -0. So, for small enough values of ]HI] the critical cluster 
becomes large compared with the zero-field correlation length ( ( T ) :  R, >> 6. Several 
conclusions follow from this notation. 

(i) We can average over ‘small-scale’ fluctuations of size of the order oft ( ( T )  and 
consider the ferromagnet as a continuous medium with magnetization -MO inside the cluster, 
and +MO beyond it. 

(ii) There is only a very small chance of such large clusters occurring, so they can be 
treated as being well separated from one another. 

(iii) The surface tension S associated with the cluster boundary can be taken from the 
equilibrium statistical mechanics [19] 

S (A - l)ksTc/(21’2a). 

It should be mentioned that in [191 the lattice is rotated by the angle n/4, and the lattice 
constant value chosen is a = 2-’/’. 

(iv) After averaging over ‘small-scale’ fluctuations one only needs to consider the 
spherical clusters. 

The free-energy F of such a cluster with radius R is given by the phenomenological 
condensation theory [20] 

(2.3) 

t Usually these fluctuations are known as long-scale fluctuations. We shnll reserve this name for the size of the 
critical droplet RE which is assumed to be much larger than the correlation length e(T). 
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It has a maximum in the radius Rc of the critical cluster 

Such a cluster appears with probability P(Rc) proportional to the rate of decay rF1 of the 
metastable state. They are both characterized by the Boltzmann factor [IO, 111 

Phenomenological estimates (2.4) and (2.5) will be reproduced in section 5 using the 
transfer-matrix technique. 

3. Low-field equation of state in the BCS approximation 

We now study the fermionic realization of the king model 

(3.1) 

Here operators + ( x )  and @+(x)  describe a spinless fermionic field obeying the standard 
anticommutational relations 

Magnetization M 2 0 is the square root of the operator 

L denotes the system length in the x-direction, H is the magnetic field, parameter Qo is 
proportional to the reduced temperature: QO = -xt, x =. 0, t = (T - Tc)/Tc. The latter 
relation in (3.2) defines the product of two king spin operators c?(xl) and c?(x2) in terms 
of the fermionic field + ( x ) .  

The Hamiltonian (3.1) corresponds to the extreme anisotropic limit of the ferromagnetic 
Ising model on the square lattice in a uniform magnetic field ‘H can be obtained directly 
from the Ising-model transfer matrix by use of sequential duality 1211 and Jordan-Wigner 
1221 transformations followed by the formal continuous limit procedure. Correspondence 
with coupling constants J I ,  J2 > 0 and magnetic field HI of the king model in the extreme 
anisotropic limit J1 j J 2  >> 1 is given by [17] 
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where 

r = exp[-2J1/(k~Tdl << 1 

h = sinh[2Jl/(k~T)] sinh[2Jz/(k~T)] Zz Jz/(rkBT) 

and a is the lattice constant. 
The above fermionic model, being equivalent in the critical region to the Ising model, 

has by itself a very clear interpretation. Operators @+(x)  and @ ( x )  create and annihilate, 
respectively, a domain wall at a point x .  More precisely, fermion bajectories correspond 
to the domain-wall lines in the ( x .  y)-plane. Such a wall separates regions with king spin 
values u ( x ,  y) = +1 and u(x, y) = -1 (see figure 1). The last term on the right-hand 
side of (3.1) permits us to describe finite-size domains. Relation (3.2) means, simply, that 
spins at the points X I ,  xz are the same or opposite if the number of domain walls between 
these two points is even or odd respectively. As is implied by the fermion analogy, the 
free energy of two-dimensional classical system is proportional to the ground-state energy 
of the quantum one-dimensional Hamiltonian (3.1). 

kipre 1. A typical configuration of domain walls and Ising spins described by the Hamiltonian 
(3.1). 

The equation of state of the model (3.1) has been studied recently [16,17]. We shall 

If H = 0, the Hamiltonian can be diagonalized by the Bogoliubov transformation. Its 
summarize the main results which will be used in the following sections. 

ground state has the Bcs-like form 

IQ) = exp [ 5 j dxl  d x z ~ + ( x l ) ~ + ( x z ) ~ ( x l  -m) 10) 1 (3.4) 

where 

GW = j 2 exp(ipx)tan[m(p)l 

denotes the ‘wavefunction of the Cooper pair’, and with (oo(p) being the angle of Bogoliubov 
transformation 
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In the case of a small positive magnetic field H > 0 the ground state and the equation 
of state vere obtained by an approximate variational procedure. The ground state was 
approximated by the BCS vector Wp], like (3.4). where the angle qo(p) was replaced by 
some unknown function ~ ( p ) .  It was determined by minimizing the system's energy 

(3.5) 

where 

The notation f is used for the integral as understood in the sense of the Cauchy principal 
value. 

The variational equation 6E/6q(p) = 0 reads as 

In the critical region the equation of state following from (3.6) and (3.7) has the scaling 
form 

H = C1!4'~h(x,) 

where C = r3/(32r2) and x,  is the familiar scaling variable 

that lies in the interval -1 e xs c cm for equilibrium states. It should be noted that the 
critical asymptote of the zero-field magnetization in the feviomagnetic phase is 

~ ~ ( t )  = (4QoSj r2Y8. (3.9) 

The scaling function h(xJ in the adopted BCS approximation is given by the following 
construction. 

Denote by p(p; ys) the solution of the equation 

-sign(t)sin2q(p)+pcos2q(p) (3.10) 

with the boundary conditions ?(-CO; y d  = -9(00; ys) = xj4. The parameter ys is given 
by 

2 M H r  
Ys = -. 

Q,2 
The scaling variables xs and ys are connected by the relation 

(3.1 1) 

(3.12) 
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where % ( p )  = -; arctan p .  The inverse function ys(x,) with prefactorx: gives the scaling 
function ~. 

4%) = X,2YS(XS). (3.13) 

I t  is analytical in the whole interval? -1 c xr < CO and leads to correct values of the 
critical exponents p = 1/8 and 8 = 15, y =-y’ = 7/4. Perturbation theory analysis of 
equation (3.7) in the limit H 4 f O  yields 

C-(-t)-7/4(1 + ~ z J ) ~ / ~ I ( u )  t < 0 
c + t-7/4 t > O  

where 

(3.14) 

(3.15) 

c+ = 127rc- (3.16) 

U = (Ros/rZ). 

In the critical region, formulae (3.14) can be rewritten in terms of the parameters A, r ,  
and x = i3M/BHIIfi=o of the initial extreme anisotropic king model by use of (3.3): 

(3.17) 

and the same expression multiplied by a factor of 12n for f > 0. 
Exact calculation of the zero-field magnetic susceptibility for the critical 2D king model 

was reported by Barouch et a1 1231. In particular, their formula (14) describes how the 
critical amplitudes depend on the pair energies J,, J2. Applying their formula to (3.17) 
we extrapolate our estimate from the extreme anisotropic limit to the point 51 = Jz = 1. 
Obtained in such a way, critical amplitudes for the king model with unit pair energies have 
the form 

kBTcX = CO* @ltl-7/4 (3.18) 

C g  = 2-3!8[ln(1 + = 0.961 79762 (3.19~) 

CA! = C ~ ~ / ( 1 2 n )  = 0.025512474. (3.19b) 

The upper index (0) in the above estimates for the critical amplitudes is written to distinguish 
them from the exact values CO+, CO- given in [23] 

CO+ = 0.9625817322 CO- = 0.025536971 9. (3.20) 

t The initial claim [16,17] that the scaling function (3.13) is also analytical at the point x, = -1 i s  incorrect. As 
was supposed by Fisher its essential singularity lies at x, = - I  (see section 5). 
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Guttmann has recentlyf pointed out that estimates (3.19) are not new. This 'rather accurate 
approximate result' was reported by Tracy and McCoy [24] (see the last sentence in their 
paper before the acknowledgments). They derived (3.19) in quite a different way by using 
leading terms of certain series for the kro-field correlation functions. 

To conclude this section let us present a useful critical asymptote for the scaling variable 
ys. which expresses it in terms of universal quantities in the vicinity of the line T < Tc, 
H + 0. In this region the magnetization M in (3.1 1) can be replaced by its zero-field value 
(3.9). Combining (3.11) with (3.9), (3.14), (3.15) and (3.18)-(3.20), in the scaling region 
for T < TC we can write 

(3.21) 

The uumerical factor 

W=Co-/CA!= 1.00096 ... (3.22) 

was introduced in order to improve formula (3.15) by making it agree exactly with result 
(3.20). After replacing H + HI one can extrapolate the universal relation (3.21) to the 
king model with arbitrary value of anisotropy ratio J , /J2 ,  though it was derived in the limit 
J1/J2 + CO. In particular, in the case of equal coupling constants JI  = 52 formula (3.21) 
takes the form 

(3.23) 

4. The dilute limit 

The most unambiguous and reliable results obtained in the framework of the droplet (cluster) 
picture are related to the dilute limit. It corresponds to the ferromagnetic phase well below 
the Curie point where the density of clusters of the opposite phase is small. In OUT scheme the 
dilute h i t  is characterized by the small angle of the Bogoliubov transformation lp(p)I << 1. 
This allows us to linearize (3.5) and (3.7) with respect to p(p): 

t The aulhor was kindly informed by Professor B Nienhuis &bout this unpublished notation of Professor A I 
Guttmann. 
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4.1. The coordinate representalion 

Equation (4.2) ha$ a very clear interpretation in the coordinate representation 

3397 

(4.3) 

where x E (-00, +CO) and 

d x )  = (27C’ / dprp(p) exp(ipx). 

This is a Schriidinger-like equation describing relative motion of two domain walls bounding 
a cluster. They are coupled by the linear potential Hlxl and have a source at the origin. 

For positive !& and H equation (4.3) has a bound-state solution given by 

r .  Ai[(IxI+$)(:s/3] 

4s 
q ( x ;  H )  = -i- sign(x) Ai a x 113 [ H (7) ] 

(4.4) 

is the Airy function; however, if H becomes negative, no loct~-~;e~ ~iolutions of (4.3) exist. 
One can obtain two linearly independent delocalized solutions rp*(+(n; H) = p(x; H & io) 
by performing an analytical continuation of (4.4) in the complex H-plane from the point 
Ho > 0 along the paths H ( w )  = HO exp(%icu), 0 < U c n. 

The minimal value of function (4.1) can be written as 

The constant on the right-hand side corresponds to a divergent integral which does not 
depend on temperature or magnetic field and, therefore, can be omitted. Inserting (4.4) into 
(4.5) and using well known properties of the Airy function we find the ]HI + 0 asymptote 
of the ground-state energy for both positive and negative values of the magnetic field 

r2 H > 0 E = - ( ~ O / S ) ” ~  - H’  1 - - + ... 
8s ( 3,’:o) , 

(4.6) 

(4.7) 

The asymptote has the essential singularity at the point H ~ =  0. 
Unfortunately, a straightforward transfer of the above analysis into the scaling region 

is impossible; the ‘kinetic energy ter” in (4.3) becomes non-local in the latter case (see 
section 5.2). To facilitate further analysis of the scaling limit, we shall consider the dilute 
limit directly in the momentum representation. 
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4.2. The momentum representation 

Rewrite equation (4.2) as 

(4.8) 

where { ( p )  = rp(p) - po(p) and (oo(p) = -rp/[2(% +sp2) ] .  Let us define two functions 
g&) of the complex variable p as 

+W 

gi(p) = n-' lm dqiYq)(q - PI-' I m p s 0  (4.9) 

which are analytic in the upper and lower half-planes respectively. Using the Plemel 
formulae, one obtains from (4.8) two equations in the real p-axis: 

dg+(p)/dp - dg-(p)/dp = 2idW)/dp  (4.10) 

Adding (4.10) to (4.11) we have 

where 

Let us imagine for a while that we know the function p ( p )  in equation (4.12). Its formal 
general solution is then given by 

(4.15) 

where f (p)  = &,p + $p3 .  
It is c!ea that in the case Im H > 0 we must put po = +w in (4.15). whereas 

for ImH < 0 we have to assign p , ~  = -W. Only such a choice permits us to prevent 
divergency in integral (4.15) and to obtain a solution going to zero as p + &W. In the 
half-line Im H = 0, Re H > 0 these two functions must coincide, since a unique bound-state 
solution is expected in this case; however, for Im H = 0, Re H < 0 we have two different 
solutions {*(p;  H) = {(p; H =k io) given by 

(4.16) 

Continuing (4.16) from the real p-axis into the upper half-plane I m p  > 0, we can neglect 
the term dg+(p)/dp in (4.13) and replace p ( p )  by p o ( p )  in (4.16) for small enough values 
of IHI. Therefore, for the difference 

A{(p ;  H) = { ( p ;  H + io) - { ( p ;  H - io) (4.17) 
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we have the asymptotic relation 

A<(P;  H) ss -D(H) exp[if(p)/Hl (4.18) 

valid under conditions Imp  > 0, Im H = 0, Re H < 0 and I HI -f 0. Here 

Recalling that <(pi If) is an odd function of p ,  one can immediately write down the similar 
relation for I m p  < 0 

A S b ;  H)~z D(H)exp[-if(p)/Hl. 

So, in the whole p-plane including the real axis we can write 

AS(p; H) g -2iD(H) sin[f(p)/Hl. (4.19) 

Inserting (4.19) into the relation 
+m 

A E ( H )  = E ( H  +io) - E(H - io) = / dppo(p)Ac(p) (4.20) 
2lr -- 

following directly from (4.1) and (4.2). we have finally for H e 0, \HI + 0 

(4.21) 

in agreement with our previous result (4.7). 

5. The scaling limit 

In the critical region, thermodynamics is determined by fluctuations with momenta p small 
compared with Qo/s. So, we can drop the term sp2 in the energy function (3.5). Then, 
after regularization, it becomes 

Reg E = / ~{Qo[cos2%(p)  - cos2q(p)J + rp[sinZqp(p) - sinZm(p)]) - H M  (5.1) 

where 

Reg E ( H ,  T) s E(H, T )  - E(0, T) 

As in the previous section, (oo(p) and < ( p )  denote the zero-field solution and field-induced 
deviation respectively: 

W ( P )  = - 4  =ctan[rp/aoi < ( P )  = V ( P )  -rp0(p). 

The zero-field magnetization MO is given by (3.9). 

the first term in function (5.1) with respect to r(p): 
As we are interested in the case of extremely smaU magnetic fields, we can linearize 
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5.1. The momentum representation 

The variational equation following from (5.2) reads 

Its asymptotical analysis for small magnetic fields H is almost the same as that given in 
section 4.2 for the dilute limit. We restrict ourselves to sketching the principal points. 

Using notation (4.9) we obtain 

- iMHdC(p)/dp = [Qi + (rp)211/2C(~) 

- dg+(p)/dp - n-' f m  - dq dylo(d/dq]. 
- m q - P  

(5.4) 

It is convenient to rewrite the above equation in terms of the new independent variable 
U = arcsinh(rp/Qo): 

- iy, dg(u)/du = 2<(u) cosh' U + ysp(u) (5.5) 

where ys is the familiar scaling parameter (3.11) proportional to the magnetic field, and 

P ( U )  = PO@) - dg+(u)/du 

PO@) = -- dp'du f m  dpo(q)/dq = -4 tanhu. 
-mq-!J 

The formal solution of (5.5) is given by 

where f ( u )  = U+ f sinh2u. As in the dilute limit, we must choose uo = +CO for Im ys > 0, 
and uo = -CO for Im ys c 0. Consider now the case of a negative magnetic field, i.e. ys < 0. 
In complete analogy with (4.19) we have 

where 

rCm 

The latter integral is given in the limit ys + -0 by the asymptotical formula 

D(y,) Z (rr/6)'/'exp - - - II: 2;sil 

(5.7) 

(5.8) 

(5.9) 

describing the contribution of the saddle point uo = i[q - of the integrand. 
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A representation analogous to (4.20) can be written as 

Inserting (5.7) and (5.9) into (5.10) for H < 0, JHJ --f 0, we finally obtain 

(5.11) 

Thus, in both dilute and scaling limits we observe similar behaviour of the free-energy: 
it has branching and essential singularities at the point H = 0, in agreement with the 
predictions of the droplet model. 

Rewriting (5.11) by use of (3.21) in terms of the initial king model gives 

12 
ImF(-IHII f io) = A- (5.12) 

Here F is the freeenergy per unit site, W = 1.00096.. . is the numerical constant (3.22) 
and the magnetic susceptibility x is taken at the zero field. 

Though relation (5.12) was derived in the extreme an isotropic^ limit, it appears to be 
independent on the anisotropy ratio J1/J2, as implied by the universality hypothesis in the 
critical region. For the case JI  = J2 we have 

(5.13) 

Formulae (2.1) and (3.23) have been taken into account. Apart from the prefactor, the 
result (5.13) coincides with the droplet model phenomenological estimate (2.5) for the rate 
of decay of the metastable state. Linear dependence on the magnetic field of the prefactor 
in (5.13) is also in agreement with predictions of the droplet theory. Such a behaviour 
is commonly associated with the contribution of the Goldstone excitations on the droplet 
surface [9,25]. Thm, we have given a strong support to the applicability of the droplet 
model in the critical region and to Langer's conjecture cited in the introduction. 

5.2. The coordinate representation 

In the critical region the coordinate representation is not as convenient as in the dilute limit. 
Nevertheless, it provides a better insight into the nature of the metastable state. Throughout 
this section the case of a small negative magnetic field H < 0 is considered. 

First, let us note that for the arbitrary probe function ~ ( p ) ,  function (3.5) gives an exact 
upper bound for the ground-state energy of the Hamiltonian (3.1). Rewridng (5.2) in the 
coordinate representation, we obtain the inequality 

E ( H ,  T )  - E(H,O) 2 d r ~  ~ Z ~ ' ( ~ I ) C ( X Z ) L ( ~ I  - X 2 )  - HMO 

(5.14) 

s 
- 1  x exp [ 

~1.x) = / *IQ; + (rp)21'/2exp(ipx). 

where 

2Z 
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Now let us choose the trial function c ( x )  as 

(5.15) 

For XO. d >> r/ao and small enough constant C the right-hand side in (5.14) reduces to 

1 ~ 1 ~ ~ 0  - ~ ~ o e x p ( - x o l ~ ~ ~ ] .  (5.16) 

The Ea-like state @ corresponding to (5.15) has an obvious interpretation; it describes the 
zero-field ferromagnetic vacuum with 2(L/ I )  = L[C[' extra domain walls intersecting the 
interval (0, L) of the x-axis. The extra domain-walls bound L / l  large-scale clusters of size 
no. If ( x o / l )  (< 1 then these clusters do not intersect with each other and (5.16) transforms 
into 

IHlMo + (2/o(ao - IHIMoxo). (5.17) 

The first term gives the energy of the ferromagnetic metastable 'ground state'; the second 
term corresponding to large-scale clusters becomes negative for x g  > x,. The size of the 
critical cluster x, is given by 

(5.18) 

Let us map this result to the Ising model. In the extreme anisotropic limit using (3.3) 
we obtain 

1 2a x, = -- 
I Y S I  (A - 1)' 

(5.19) 

As is known, critical fluctuations in the Ising model with arbitrary J I ,  JZ become isotropic 
and universal if one describes them in terms of the scaling coordinate r(m,  n)  given by 
[26]: 

Here n and m denote the column and row of a site in the square lattice and 

z1 = tanh(Jl/kBTc) 22 = tanh(JZ/kBTc). 
For n = x,/u and m = 0, formula (5.20) reduces to 

r = (xc/u)lA - 11 

r = ( X J U ) I A  - 11/47 

in the,extreme anisotropic limit J l j J 2  >> 1, and to 

for .I1 = J2. Therefore, we obtain an extra factor .& in the latter case: 

By use of (2.1) and (3.23) we rewrite the above formula as ( J I  = J2 is supposed) 

(5.20) 

(5.21) 

where R, is given by (2.4). We see that the size of the critical cluster resulting from the 
above transfer-matrix analysis is the same as the diameter of the spherical critical droplet 
given by the phenomenological condensation theory. 
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6. Conclusions 

The present analysis of the 2D king model and related fermionic theory supports the droplet 
theory of condensation in both dilute and scaling limits. 

(i) In both cases we observed a very weak essential singularity in the freeenergy at the 
origin H = 0. 

(ii) When the free-energy is continued analytically into the half-line H < 0 it gains a 
non-zero imaginary part. For the critical king model this imaginary part coincides, apart 
from some prefactor, with the rate of decay of the metastable state estimated in the frame 
of the phenomenological droplet condensation theory. 

(iii) For H < 0, T < Tc the metastable ‘ground state’ of the transfer matrix becomes 
unstable. In the fermionic analogy it looks like quantum tunnelling of a particle from a 
potential-well through a banier of finite size and width. The width of the barrier coincides 
with the diameter of the critical droplet estimated phenomenologically. 

It should be pointed out that in our analysis we have followed the ideology of Langer’s 
paper [9]. However, in contrast to [9] we considered the quantum Hamiltonian (3.1) derived 
directly from the king model transfer matrix. This allowed us to make a quantitative 
comparison of our results with predictions of the droplet model. 

We emphasize once again that we have used the approximate evaluational procedure 
based on the BCS ansatz for the ground state of the transfer matrix. An important question 
remaining, is to what extent the results obtained depend on the above approximation? It 
is unlikely, however, that the main results will change in the exact treatment. The.droplet 
picture can be taken to imply that there exists a path (or paths) in the configurational space 
that links the metastable state with thermodynamically more preferable configurations. This 
enables the system to relax in a finite time. The ‘narrow throat’ of the relaxation is just the 
critical cluster. In sections 2 and 5 we demonstrated, from different points of view, that in 
the critical region such paths can be associated with spherical clusters (droplets). If some 
others paths are also important then they could only give additional channels of relaxation 
which would increase the rate of decay. Thus, the main conclusions of the droplet model 
will hold. 
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